Description
We use the active form of Vitamin B12, Methylcobalamin in what is the industry’s highest potency at 98% purity. The formulation also includes 5-Methyltetrahydrofolate, which is the most biologically active form of the B-vitamin, folic acid.
Introduction to Vitamin B12 & 5-MTHF
Vitamin B12 is a water-soluble vitamin that is naturally present in some foods. It is a nutrient that helps keep the body’s nerve and blood cells healthy and helps make DNA, the genetic material in all cells. Vitamin B12 also helps prevent a type of anemia called megaloblastic anemia that makes people tired and weak.
Vitamin B12 exists in several forms and contains the mineral, Cobalt. Hence, those compounds with Vitamin B12 activity are called ‘cobalamins’ and the active forms are Methylcobalamin and 5 Deoxyadenosylcobalamin
Vitami B12 is required for proper red blood cell formation, various neurological functions, as well as DNA synthesis. Vitamin B12 functions as a cofactor for methioine synthase and L-methlmalonyl-CoA mutase.
- Vitamin B12 is found in various animal products such as fish, meat, poultry, eggs, milk, and milk products.
- Vitamin B12 is generally not present in plant foods. Some nutritional yeast products contain B12.
- In food sources, Vitamin B12 is usually found as cyanocobalamin, a form that the body needs to convert into the active forms of methylcobalamin and 5-deoxyadenosylcobalamin.
Vitamin B12 is one of the family of 13 vitamins and is essential to life and health. B12 along with folate (Vitamin B9) is essential for the production of red blood cells and aids in the maintenance of a healthy nervous system and immune system. B12 deficiency damages the fatty tissue – myelin – which surrounds and protects nerve fibres, it damages the brain, spinal cord, peripheral nerves, and nerves of the eye.
It is a crucial element in the construction of DNA. It can result in symptoms ranging from severe anaemia requiring blood transfusions, to serious and permanent nerve damage and psychiatric conditions.
B12 Deficiency affects the following systems:
- Neurological
- Haematological
- Immunological
- Vascular
- Gastrointestinal
- Musculoskeletal
- Genitourinary
Cynocobalamin VS Methylcobalamin
Simply put, Cynocobalamin is the inactive form of Vitamin B12 where as Methylcobalamin is the active form of Vitamin B12. Cynocobalamin is found in various food sources, but once consumed the body needs to convert it to Methylcobalamin.
Methylcobalamin has a methyl group (just carbon and hydrogen) while cyanocobalamin contains a cyanide molecule. Although the amount of cyanide in is too small to be harmful, your body will still need to remove and eliminate this compound. As it has no use for the cyano-compound itself, it will set about converting any cyanocobalamin you take into methylcobalamin as soon as possible – it requires the methyl-compound that the human body needs to function properly.
Functions of Vitamin B12
- B12 works with the B vitamin folate to producce the body’s genetic material
- It helps keep levels of the amino acid homocysteine in check, which may help decrease heart disease risk
- It is essential in the production of red blood cells, which carry oxygen through the blood to the body’s tissues
- Aids in tissue growth
- Allows the body to use certain nutritents
- Facilitates numerous chemical reactions
- Human body normally contains 5000-10000 µg Vitamin B12
5-Methyltetrahydrofolate
5-methyltetrahydrofolate (5-MTHF) is the most biologically active form of the B-vitamin folic acid, also known generically as folate. 5-MTHF functions, in concert with vitamin B12, as a methyl-group donor involved in the conversion of the amino acid homocysteine to methionine. Methyl (CH3) group donation is vital to many bodily processes, including serotonin, melatonin, and DNA synthesis.
Therapeutically, 5-MTHF is instrumental in reducing homocysteine levels, preventing neural tube defects, and improving vascular endothelial function. Research on folate supplementation suggests it plays a key role in preventing cervical dysplasia and protecting against neoplasia in ulcerative colitis. Folate also shows promise as part of a nutritional protocol to treat vitiligo, and may reduce inflammation of the gingiva.
Furthermore, certain neurological, cognitive, and psychiatric presentations may be secondary to folate deficiency. Such presentations include depression, peripheral neuropathy, myelopathy, restless legs syndrome, insomnia, dementia, forgetfulness, irritability, endogenous depression, organic psychosis, and schizophrenia-like syndromes. 5-MTHF supplementation may be a more favorable method of folate repletion.
The mechanism of action of 5-MTHF is through its role as a methyl donor in a range of metabolic and nervous system biochemical processes, as well as being indirectly necessary for DNA synthesis. Serine reacts with tetrahydrofolate, forming 5,10-methylenetetrahydrofolate, the folate derivative involved in DNA synthesis. The enzyme 5-MTHFR converts 5,10-methylenetetrahydrofolate to 5-MTHF, which donates its methyl group to cobalamin (vitamin B12), forming methylcobalamin. The enzyme methionine synthase catalyzes the donation of methylcobalamin’s methyl group to the amino acid metabolite homocysteine, converting it to the amino acid methionine. Methionine subsequently is converted to S-adenosylmethionine (SAMe), a methyl donor involved in numerous biochemical processes.